Answer all questions. Calculators and Mobile Phones are not allowed.

- 1. (4pts.)
 - (a) Find the exact value of $\sin(\tan^{-1}(\frac{2}{3}))$.
 - (b) Find the exact value of coth(ln 2).
- 2. (4pts.) Let $f(x) = \int_0^x \tan(t) \sec^2(t) dt$, $0 \le x < \pi/2$. Find

- (a) f'(x)
- (b) $f(\pi/4)$
- (c) $(f^{-1})'(\frac{1}{2})$
- 3. (12pts.) Find, if possible,
 - (a) $\int \frac{\tan^{-1}x}{x^2} dx$
 - (b) $\int_0^1 \frac{\ln x}{\sqrt{x}} dx$
 - (c) $\int_{1}^{2} \frac{x}{3x^2 6x + 4} dx$
- 4. (4pts.) A curve C is given parametrically by $x = (t^2 + 1)e^t$ and $y = (t^3 + 2t^2)e^t$.
 - (a) Find the points P(x, y) where the tangent is vertical.
 - (b) Determine whether C is concave upwards or downwards at t=0
- 5. (4pts.) Find the area of the surface obtained by rotating the curve $y = \sqrt{x+1}$, $1 \le x \le 5$ about the x-axis.
- 6. (4pts.) Find the centroid (center of mass) of the region bounded by the curves $y = \sin x, y = 0, x = \frac{\pi}{4}$ and $x = \frac{3\pi}{4}$.
- 7. (4pts.) Find the length of the curve $r = 4\cos^2(\frac{\theta}{2})$.
- 8. (4pts.) Find the area enclosed by one loop of the curve $r = \sin 3\theta$.

(a) Put $x = \tan^{-1} \frac{2}{3}$. Then $\tan x = 2/3$, (1pt) so $\sin x = \sin(\tan^{-1}(\frac{2}{3})) =$

 $2/\sqrt{13}$ (1pt).

(1pt).

3.

June 2006, Math. 102 solutions

(a) $f'(x) = \tan(x) \sec^2(x)$. (1pt)

integral becomes

 $\lim_{t\to 0^+} \frac{\ln t}{t^{-1/2}}$

concave upwards(1pt).

(c) $(f^{-1})'(\frac{1}{2}) = 1/f'(\pi/4) = 1/2$. (1.5pt)

Thus $I = -\frac{1}{x} \tan^{-1} x + \ln|x| - \frac{1}{2} \ln(1+x^2) + C$ (1pt).

(L'H rule) = $\lim_{t\to 0^+} \frac{1/t}{-\frac{1}{x}t^{-3/2}} = 0$. Thus $\int_0^1 \frac{\ln x}{\sqrt{x}} dx = -4$

 $=\frac{1}{6}\ln[(x-1)^2+\frac{1}{3}]+\frac{1}{\sqrt{3}}\tan^{-1}[\sqrt{3}(x-1)]$ (1pt). Thus

4. $dy/dx = \frac{dy/dt}{dx/dt}$ and $dy/dt = t(t+1)(t+4)e^t$, $dx/dt = (t+1)^2e^t(1pt)$.

(a) Thus $dy/dx = \frac{dy/dt}{dx/dt} = \frac{t(t+4)}{t+1}, t \neq -1$.

Thus, the tangent is vertical only at t = -1(1pt).

6. $\bar{x} = \frac{1}{A} \int_{\pi/4}^{3\pi/4} x \sin x dx, \bar{y} = \frac{1}{A} \int_{\pi/4}^{3\pi/4} \frac{1}{2} \sin^2 x dx$ (1pt). Now,

 $A = \int_{\pi/4}^{3\pi/4} \sin x dx = -\cos x \Big|_{\pi/4}^{3\pi/4} = \sqrt{2}(1/2\text{pt}),$

Thus $\bar{x} = \pi/2$, $\bar{y} = \frac{1}{4\sqrt{2}}(1 + \pi/2)(1\text{pt})$.

 $\lim_{t\to 0^+} \int_t^1 (\ln x/\sqrt{x}) dx = \lim_{t\to 0^+} (-4+4\sqrt{t}-2\sqrt{t}\ln t)$. Now, $\lim_{t\to 0^+} \sqrt{t}\ln t = 1$

(c) Set $J = \int \frac{x}{3x^2 - 6x + 4} dx$. Since $3x^2 - 6x + 4 = 3[(x - 1)^2 + \frac{1}{3}]$, we put u = x - 1 (1pt). Then $J = \frac{1}{3} \int \frac{u+1}{u^2 + \frac{1}{3}} du = \frac{1}{6} \int \frac{2u}{u^2 + \frac{1}{3}} du + \frac{1}{3} \int \frac{du}{u^2 + \frac{1}{2}} (1pt)$

 $\int_{1}^{2} \frac{x}{3x^{2}-6x+4} dx = \left[\frac{1}{6} \ln[(x-1)^{2} + \frac{1}{3}] + \frac{1}{\sqrt{3}} \tan^{-1} \left[\sqrt{3}(x-1)\right]\right]_{1}^{2} = \frac{\ln 2}{3} + \frac{\pi}{3\sqrt{3}} (1 \text{pt}).$

Now $dx/dt = 0 \iff t = -1$ and $\lim_{t \to -1 \pm} dy/dx = \lim_{t \to -1 \pm} \frac{t(t+4)}{t+1} = \mp \infty$.

(b) $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{\frac{d}{dt}\frac{t(t+4)}{t+1}}{\frac{dx}{t}} = \frac{t^2+2t+4}{(t+1)^4e^t} = 4$ when t = 0(1pt). Thus the curve is

5. We have $dy/dx = \frac{1}{2\sqrt{1+x}}$, so $y\sqrt{1+(dy/dx)^2} = y\sqrt{1+\frac{1}{4(x+1)}} = \sqrt{4x+5}(2pt)$.

Thus the surface area is $2\pi \int_1^5 y \sqrt{1 + (dy/dx)^2} dx = 2\pi \left[\frac{1}{6}(4x+5)^{3/2}\right]_1^5 = \frac{98\pi}{3}(2\text{pt}).$

 $\int_{\pi/4}^{3\pi/4} x \sin x dx = \left[-x \cos x + \sin x \right]_{\pi/4}^{3\pi/4} = \frac{\pi}{\sqrt{2}} (1 \text{pt}),$ $\int_{\pi/4}^{3\pi/4} \frac{1}{2} \sin^2 x dx = \frac{1}{4} \int_{\pi/4}^{3\pi/4} (1 - \cos 2x) dx = \frac{1}{4} \left[x - \frac{1}{2} \sin 2x \right]_{\pi/4}^{3\pi/4} = \frac{1}{4} (1 + \pi/2) (1/2 \text{pt}).$

(b) Put $y = \ln 2$. Then $e^y = 2$, $e^{-y} = 1/2$, (1pt) so $\coth y = \frac{e^y + e^{-y}}{e^y - e^{-y}} = 5/3$

(b) $f(\pi/4) = \int_0^{\pi/4} \tan(t) \sec^2(t) dt = \left[\frac{1}{2} \tan^2 x\right]_0^{\pi/4} = 1/2$ (1.5pt)

(a) Set $I = \int \frac{\tan^{-1} x}{x^2} dx$ and put $u = \tan^{-1} x$, $dv = dx/x^2$. Then v = -1/x and $I = -\frac{1}{x} \tan^{-1} x + \int \frac{dx}{x(1+x^2)} (1\text{pt})$. Now, $\frac{1}{x(1+x^2)} = \frac{a}{x} + \frac{bx+c}{1+x^2} = \frac{1}{x} - \frac{x}{1+x^2} (2\text{pt})$. (b) $\int \frac{\ln x}{\sqrt{x}} dx = \int \ln x d(2\sqrt{x}) = 2\sqrt{x} \ln x - 2 \int x^{-1/2} dx = 2\sqrt{x} \ln x - 4\sqrt{x}$. Our

 $4\cos\frac{\theta}{2}(2\text{pt})$. This cardioid is traced out as θ ranges from 0 to 2π , but as the curve is symmetric about the polar axis, the length of the curve is $2\int_0^{\pi} 4\cos\frac{\theta}{2}d\theta = 16[\sin\frac{\theta}{2}]_0^{\pi} =$

7. Here $r = 2(1 + \cos \theta)$, so $\sqrt{r^2 + (dr/d\theta)^2} = \sqrt{8(1 + \cos \theta)} = \sqrt{16(\cos^2 \frac{\theta}{2})} =$

- 16(2pt). The curve is at the origin when $\theta = 0$ and again when $3\theta = \pi$. Thus a loop is
- 8. The curve is at the origin when $\theta = 0$ and again when $3\theta = \pi$. Thus a loop is traced out as θ ranges from 0 to $\pi/3(1pt)$. Thus the area of the loop is $\frac{1}{2} \frac{\pi^{3/3}}{\pi^{3/2}} = \frac{20}{20} \frac{30}{20} = \frac{1}{20} \frac{\pi^{3/3}}{\pi^{3/2}} = \frac{\pi}{20} \frac{30}{20} = \frac{\pi}{20} \frac{\pi^{3/3}}{\pi^{3/2}} = \frac{\pi}{20} \frac{30}{20} = \frac{\pi}{20} \frac{\pi}{20} \frac{\pi}{20} = \frac{\pi}{20} \frac{\pi}{20}$
 - $\frac{1}{2} \int_0^{\pi/3} \sin^2 3\theta d\theta = (1\text{pt}) \frac{1}{4} \int_0^{\pi/3} (1 \cos 6\theta) d\theta = \frac{1}{4} [\theta \frac{1}{6} \sin 6\theta]_0^{\pi/3} = \frac{\pi}{12} (2\text{pt}).$